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Fig. 1. Comparison with existing colorization frameworks: classificationmodel [Zhang et al. 2016](a), regressionmodel [Zhang et al. 2017](b), and autoregression
model [Kumar et al. 2021](c), and ours (d). The colors of the bus and human clothes are inherently multimodal while involve long-range correlated structures.
Notably, our results show superiority in color vividness and structural consistence. Flickr ©Snakebite90; Flickr ©stacey shintani.

Colorization is multimodal by nature and challenges existing frameworks to
achieve colorful and structurally consistent results. Even the sophisticated
autoregressive model struggles to maintain long-distance color consistency
due to the fragility of sequential dependence. To overcome this challenge, we
propose a novel colorization framework that disentangles color multimodal-
ity and structure consistency through global color anchors, so that both
aspects could be learned effectively. Our key insight is that several carefully
located anchors could approximately represent the color distribution of an
image, and conditioned on the anchor colors, we can predict the image
color in a deterministic manner by utilizing internal correlation. To this
end, we construct a colorization model with dual branches, where the color
modeler predicts the color distribution for anchor color representation, and
the color generator predicts the pixel colors by referring the sampled anchor
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colors. Importantly, the anchors are located under two principles: color
independence and global coverage, which is realized with clustering analysis
on the deep color features. To simplify the computation, we creatively adopt
soft superpixel segmentation to reduce the image primitives, which still
nicely reserves the reversibility to pixel-wise representation. Extensive
experiments show that our method achieves notable superiority over various
mainstream frameworks in perceptual quality. Thanks to anchor-based
color representation, our model has the flexibility to support diverse and
controllable colorization as well.
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1 INTRODUCTION
As a classic graphics problem, image colorization has been attracting
research interests of the community for decades. Its popularity is
mainly attributed to the fascinating applications, e.g., rekindling
black and white photos or remastering legacy films, and even
assisting artistic expression with color collocation, etc. Among
various colorization paradigms, automatic colorization [Zhang
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Table 1. Feature comparison among various colorization frameworks.

Framework Colorfulness Consistence Diversity Efficiency

Regression model low fair ✗ high
Classification model high low ✓ high
Autoregression model high fair ✓ low

Disentangled model (ours) high high ✓ high

et al. 2016] is the most general one and serves as the technical
basis of other derivatives, such as interactive colorization [Levin
et al. 2004], example-based colorization [Li et al. 2017], and text
guided colorization [Cho et al. 2018]. Recently, as the prevail of
deep learning, data-driven colorization methods make significant
progress by exploiting large-scale data priors. Nevertheless, despite
sufficient paired data is available for supervision, it still remains
challenging to achieve visually satisfactory results because of the
hinder of multimodality that one object may take on multiple
possible colors. As shown in Fig. 1, the bus or the man’s T-shirt is
potential to be red, yellow and blue, etc, but the ground truth is just
one of them.

Early attempts formulate the colorization as a regression problem
under the supervision of the ground truth [Cheng et al. 2015].
They tend to generate desaturated colors because regression losses
encourage conservative average modes. Even with semantic guid-
ance [Iizuka et al. 2016; Su et al. 2020] or global attention [Antic
2019] introduced, this problem can only be partially alleviated. To
model the color distribution, some works propose to formulate
the colorization as per-pixel multinomial classification over the
quantized color gamut [Larsson et al. 2016; Zhang et al. 2016].
Nevertheless, it is non-trivial to guarantee structural consistency
by pixel-independently color sampling. As a more sophisticated for-
mulation, the autoregressive model is employed to model the pixel
color distribution and inter-pixel dependence together [Guadarrama
et al. 2017; Kumar et al. 2021], but the long-distance consistence is
vulnerable to the error accumulation from sequential dependence.

We argue that image colorization is an internally entangled
task. On the one hand, it needs to predict a reasonable color for
each pixel based on semantic contexts, which is color-dependent
and involves color multimodality. On the other, it also needs to
preserve the inter-pixel color affinity, which is color-agnostic and
involves structural consistency. For example, A T-shirt might be
red or blue, which is ambiguous, but it is certain that the internal
pixels should share the same color. However, existing colorization
frameworks generally solve the two sub-tasks through a single
prediction, which hence struggle to coordinate them well.
Based on this concept, we propose to solve the colorization

problem with a disentangled framework. The key idea is to specially
locate several color anchors that can approximately represent the
color distribution of the whole image (multimodal color only),
and then by specifying the anchor colors, the image color can
be deterministically predicted by utilizing the global color affinity
(consistent structure only). To this end, we propose a colorization
model with dual branches, i.e. the probabilistic color modeler
predicts the color distribution for anchor representation and the
color generator predicts the image colors conditioned on the
assigned anchor colors. In particular, the anchors are located

through clustering analysis on the deep color features, which
fulfill the requirements of inter-anchor color independence and
global coverage. To avoid the complexity of pixel-wise attention
computation, we creatively adopt the soft superpixel segmentation
in our model, which not only reduces image primitives in a
reasonable way but also suppresses color bleeding by leveraging
luminance cues. All these designs enable our method to achieve both
vibrant colors and consistent structures. Moreover, by manipulating
the color anchors, our model even supports diverse and controllable
colorization. Table 1 compares the features of existing mainstream
colorization frameworks and ours.
Since colorization aims at generating visually plausible colors

rather than recovering the actual ground truth, those ground-truth
based fidelity metrics (like PSRN, SSIM, LIPIS) are inapplicable for
evaluation, unless the color ambiguity gets removed. Instead, the
visual perception related metrics (like FID, IS and Colorfulness) are
more reflective to the demanded colorization quality. Quantitative
evaluation under perceptual metrics shows that our method out-
performs the state-of-the-arts at a clear margin. User study further
confirms our superiority in perceptual realism. In addition, ablation
studies justify the effectiveness of our technical designs consistently.
Our contribution are as follows:

• We propose the disentangled colorization concept for the first
time, which contributes novel insight to the long-standing
colorization problem.

• We present a novel colorization model that disentangles the
color multimodality and structure consistency via global an-
chors, which pushes forward the state-of-the-art significantly.

• We introduce soft superpixel segmentation to colorization
task and demonstrate its advantages.

2 RELATED WORKS
Automatic Colorization. Automatic colorization is generally learn-

ing based method since data prior becomes indispensable cues.
Early attempts define colorization as a regression problem and
solve it with simple prediction models [Cheng et al. 2015; Desh-
pande et al. 2015]. Recently, some end-to-end CNN models are
proposed to promote the performance by integrating some advanced
techniques. To encourage global semantic guidance, Iizuka et
al. [2016] propose a dual-task structure to jointly learn pixel color
prediction and image classification. To learn color priors of separate
categories, semantic segmentation maps [Guadarrama et al. 2017;
Zhao et al. 2020] or instance-level bounding box [Su et al. 2020]
is integrated into the colorization framework. Vitoria et al. [2020]
further adopt Generative Adversarial Network (GAN) to promote
the realism of colorized results. Antic et al. [2019] develop a
popular open-source colorization project that is based on Self-
attention GAN [Zhang et al. 2019] and uses lots of engineering
tricks to optimize the results. Although remarkable results can
be obtained on color-deterministic cases (like natural scenery),
these regression based methods still struggle to generate vivid and
structurally coherent colors for most man-made scenes that are
generally with color uncertainty. Considering this limitation, some
probabilistic modeling based methods are proposed to take the
color multimodality into account. However, per-pixel probability

ACM Trans. Graph., Vol. 41, No. 6, Article 204. Publication date: December 2022.



Disentangled Image Colorization via Global Anchors • 204:3

4

𝐅 𝐅௦ 𝐅௦ᇱColor Generator

Probabilistic 
Color Modeler𝐀

SP
‐P
oo

lin
g

𝐏௦

Sampling

SP
‐D
iff
us

io
n

𝐅ᇱ

𝐌௦

Anchor Color Representation

Anchor‐Guided Color Generation

Feature Extraction

SPixNetSPixNetSPixNet

BackboneBackboneBackbone RefineNetRefineNetRefineNet

Convolutional module Transformer module Parameter‐free module Tokenized tensor

𝐋 𝐂

Anchor Locator

Fig. 2. System overview. Given a grayscale input G, we first extract the feature map F and the local affinity association map A. Then, the tokenized backbone
feature F′ is used for anchor-based color modeling and anchor-guided color generation respectively. Particularly, the anchors are adaptively located by the
anchor locator. Finally, by pixel-level refinement, we obtain the color output C. ⊙ denotes Hadamard product and ⊕ denotes channel concatenation.

prediction [Larsson et al. 2016; Zhang et al. 2016] poses challenge
to sampling structurally consistent colors, while image-level based
modeling [Deshpande et al. 2017; Messaoud et al. 2018] (e.g., mixture
Gaussian model) is only feasible to specific category (human face,
church, etc) because of limited expressiveness. Stepping forward
further, seminal works [Guadarrama et al. 2017; Zhao et al. 2020]
propose to model the color multimodality and inter-pixel correlation
through a uniform autoregressive model. Most recently, Kumar et
al. [2021] utilize Transformer based autoregressive model to further
promote the performance. Unfortunately, such model is vulnerable
to error accumulation from sequential dependence and thus can not
guarantee long-distance consistence well.

Example-Based Colorization. Early example-based methods try to
transfer colors from an example image to the grayscale image by
utilizing global color statistics [Welsh et al. 2002] or some local
similarity measurements [Bugeau et al. 2014; Ironi et al. 2005].
Apparently, such hand-crafted similarity metrics can not guarantee
reasonable correspondences between varied image contents and
thus tends to cause noticeable artifacts. Recently, some works
propose to make use of deep features extracted from pretrained
semantic understanding network (i.e. VGG-19) for reliable matching,
so that those visual difference but semantically-related content
can be transferred between images [He et al. 2019]. However,
these methods require a suitable content-related reference to work
properly, which poses challenge for users, even with automatic
retrieval system assisted [Chia et al. 2011]. To alleviate this obstacle,
He et al. [He et al. 2018] propose to learn the example-based
colorization mapping from the large-scale dataset, which achieves
robustness to the given reference thanks to the learned natural color
distributions. Contributing in another line, Wu et al. [Wu et al. 2021]
make the first attempt to utilize GAN inversion [Abdal et al. 2019;
Gu et al. 2020] techniques to obtain a content-related reference
image for example-guided colorization, though its application is
restricted by the samples used for GAN training.

Interactive Colorization. Interactive methods require users to
provide color hints to guide the colorization process. The pioneering
work [Levin et al. 2004] solves a Markov Random Field to propagate
sparse color strokes to the whole grayscale image under the
assumption that adjacent pixels probably have similar color. The
follow-ups leverage more advanced similarity measurements, like
texture [Qu et al. 2006], intrinsic distance [Yatziv and Sapiro
2006], etc, to achieve better propagation. While remarkable results
can be obtained with careful interactions, it demands intensive
manual work and professional skills. By exploiting the capability
of deep neural networks, a real-time user interactive colorization
model [Zhang et al. 2017] is proposed and only requires sparse
color points to generate a visual plausible result. More recently, an
edge-enhancing framework is proposed to post-process the color
bleeding artifacts by providing interactive scribbles [Kim et al. 2021].
Additionally, global hints like color palettes [Chang et al. 2015] or
even cross-modal text description [Cho et al. 2018] are also useful
interaction measures to guide the colorization.

3 OVERVIEW
Given a grayscale input, our disentangled colorization model learns
to represent the color distribution through several carefully located
anchors, and then predict the pixel-wise colors conditioned on the
freely sampled anchor colors. Fig. 2 illustrates the model structure
that consists of three functional modules, i.e. feature extraction,
anchor color representation, and anchor-guided color generation.
Specifically, we first extract the shared features F and the superpixel
association map A from the input grayscale L ∈ R𝐻×𝑊 ×1 through
the backbone network and SPixNet respectively. By pooling F with
A, we get the superpixel based feature tokens F𝑠 that are then fed
to the probabilistic color modeler and color generator separately.
Note that, the color modeler predicts the color probabilities P𝑠 for
all primitive tokens, from which the color anchors are selected with
the anchor location maskM𝑠 that is computed by the anchor locator.
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Sampling from the color distributions of anchors (i.e. P𝑎𝑠 = M𝑠 ⊙ P𝑠 ),
a set of anchor colors C𝑎𝑠 and F𝑠 are fed to the color generator and
then pixel-wisely refined by the RefineNet to generate the final color
output C ∈ R𝐻×𝑊 ×2 in Lab color space.
The advantage of this disentangled model lies in: (i) the color

multimodality of the image is represented by the color distribu-
tion of several independent anchors, which are free of structural
consistency constraint; (ii) once the anchor colors are determined,
the image color prediction almost equals to learning global affinity
between the anchors and other primitives, which are free of color
ambiguity. The anchors are allocated by clustering analysis on colors
affinity, which guarantees the anchors with color independence and
global coverage. In training phase, we perform clustering on the
chromatic channels of the ground truth and select one primitive
from each color cluster as anchors. In inference phase, the clustering
analysis is conducted on the learned features of the color modeler,
which makes similar effects.

Our model can be trained in an end-to-end manner. The loss
function and training details will be introduced in Section 4.4 and
Section 5.1 respectively. In inference phase, our model still reserves
decent manipulative flexibility for users. Apart from the default
automatic colorization, we can further obtain diverse or controllable
colorization results by sampling from the anchor color distribution
or manually modifying anchor colors and locations.

4 METHODOLOGY
We aim at an automatic colorization method that guarantees vivid
colors and consistent structures through disentanglement learning.
As diagrammed in Fig. 2, our model adopts two kinds of mainstream
network architecture, Convolutional Neural Networks (CNN) and
Transformers [Vaswani et al. 2017], because of their respective
merits. Particularly, the CNN backbone network holds the major
model capacity and extracts features based on structured receptive
field. For the superiority in capturing global attentions, two light-
weight Transformers (only 3% parameters of the whole model), i.e.
the color modeler and the color generator, are additionally employed
to capture the global semantics and color correlations. Besides,
SPixNet predicts a soft association map for superpixel based feature
representation, and RefineNet further refines the output of the color
generator in pixel level. Note that, although multiple modules are
used, our model is still in line with most mainstream colorization
models in parameter amount and computational efficiency (see Ta-
ble 5). The network architectures are detailed in the supplementary.

4.1 Local Affinity Aggregation
Digital images generally consist of massive pixels that present strong
color correlation within neighborhoods. It is very necessary to
reduce the colorization primitives through affinity aggregation.
On the one hand, concise primitives facilitate more effective
global attention computation (avoiding distraction). On the other,
representing a set of color-homogeneous pixels with one color
primitive benefits spatial consistency. Specifically, we introduce
the soft association map based superpixel segmentation [Yang et al.
2020] to our colorization model, because of the unique merits.

7
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Fig. 3. Association map based superpixel segmentation and reconstruction.
For visualization purpose, the segmentation is overlaid on the ground-truth
color image (b), and the chromatic channels reconstructed via Eq. 2 are
combined with the input grayscale as a color image (c). Flickr ©Emma.

Following [Yang et al. 2020], we represent the superpixel segmen-
tation as a soft association map A ∈ R𝐻×𝑊 ×|N𝑝 | , where each entry
A(p, s) denotes the probability of the pixel p being assigned to the
candidate superpixel s, and we only consider |N𝑝 | = 9 surrounding
superpixels as candidates, such that

∑
s∈N𝑝

A(p, s) = 1,∀p. Note
that, the superpixels are initialized by partitioning the image into
a regular grid of size �̃� × �̃� (where �̃� = 𝐻

𝑆
,�̃� = 𝑊

𝑆
and 𝑆 is the

grid cell size.), namely each grid cell is an initial superpixel seed.
Given the predicted association map A and the pixel property F (e.g.
pixel values or other features), we can compute the center of any
superpixel s = {v𝑠 , l𝑠 }, where v𝑠 is the property vector and l𝑠 is the
location vector, as follow:

v𝑠 =

∑
p∈P𝑠

F(p) · A(p, s)∑
p∈P𝑠

A(p, s) , l𝑠 =

∑
p∈P𝑠

p · A(p, s)∑
p∈P𝑠

A(p, s) . (1)

Here P𝑠 = {p𝑖 |s ∈ N𝑝𝑖 } denotes the pixel set with a possibility to be
assigned to the target superpixel s. This is actually an average pool-
ing operation within each superpixel, called SP-Pooling. Inversely,
given the association map A and superpixel representation, we can
also reconstruct the pixel property F′, as follow:

F̃(p) =
∑
s∈N𝑝

v𝑠 · A(p, s), p̃(p) =
∑
s∈N𝑝

l𝑠 · A(p, s). (2)

Accordingly, we call this operation SP-Diffusion. In our method,
the association map A is predicted by the SPixNet under the
supervision of the self-reconstruction of the ground-truth colorsC𝑔𝑡
(see Section 4.4 for details). Fig. 3 illustrates an example that the soft
association map enables faithful color gradient reconstruction from
the superpixels, which would be impossible by those traditional
hard superpixel segmentation. Here, we visualize the superpixels by
assigning each pixel p to the grid cell with the highest probability:
ŝ = argmax

s
A(p, s).

4.2 Color Anchor Construction
Considering the semantic correlations among image primitives, we
are motivated to represent the multimodal colors of the whole image
with some sparse color anchors. The anchors should be allocated
under some requirements. First, these anchors are uncorrelated
in terms of their potential colors, so that we can assign colors to
them independently yet risks no structure inconsistency. Second,
their colors are representative to the whole image so that no color
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Fig. 4. Anchor location by feature clustering. For visualization, we assign
each cluster with a unique color, from which the selected anchor is marked
with a star. 𝐾 = 5 anchors are used in this example.

ambiguity exists once their colors are determined. To achieve
this, we propose a simple yet effective solution, i.e. clustering the
primitives based on color affinity and taking one primitive from
each color cluster as the anchor. To learn unbiased color features,
we employ the color modeler to model the color distribution for all
primitives (i.e. superpixels).
Given the backbone feature F, we first tokenize it to superpixel

primitives F𝑠 through SP-Pooling and feed them to the Transformer
based probabilistic color modeler with position encoding applied.
Then, we obtain the color probabilities of each primitive P𝑠 ∈
R�̃�×�̃� ×313, where the color gamut is quantized into 313 color bins as
did in [Zhang et al. 2016]. Although spatial inconsistency may occur
if we sample the primitive color independently, we observe that the
learned color features (i.e. the feature before the linear projection
layer) hold similar color affinity as the ground-truth color. Fig. 4
illustrates an example to compare the clustering results under the
two paradigms. The quantitative evaluation is studied in Section 5.4.
One thing worthy noting is that the learned color features are only
ready for clustering when the training completes. So, we perform
clustering on the ground-truth colors in training phase, while we do
that on the learned color features in inference phase. Particularly,
among the primitives of each cluster, we simply take the onewith the
largest size (i.e. the pixel amount under hard segmentation) as the
anchor. The motivation is to exclude those superpixels that locate
nearby object boundaries or regions with busy structures, where
the superpixels are usually segmented with fine/small size. The
selected anchor locations are denoted by a binary mask M𝑠 , where
one means anchors and zero means other primitives. So, the color
distribution of the input image can be approximately represented by
the probabilistic color of the anchors P𝑎 = P𝑠 ⊙ M𝑠 . In theory, any
clustering algorithm is applicable to our problem and we adopt K-
Means because of its stable performance. Mean-Shift is well-known
as determining the cluster numbers automatically but its drastic
sensitivity to hyper-parameters makes it infeasible to our problem.

4.3 Anchor-Guided Color Generation
The colorization ambiguity could be removed by specifying the
anchor colors C𝑎𝑠 , since they represent the color distribution of the
whole image. In this way, it encourages the model to exploit the
internal color correlation and hence promote structural consistency.
Accordingly, our color generator takes as input the concatenation of
{F𝑠 ,C𝑎𝑠 ,M𝑠 } and outputs the conditional color feature F′𝑠 that can

7

(a) Input grayscale (b) Superpixel segmentation (c) Reconstructed colors

(a) Independently sampled 
probabilistic color

(b) Anchor‐guided color 
w/o refinement

(c) Anchor‐guided color 
with refinement

(a) Ground‐truth color (b) Clusters on ground‐
truth color

(c) Clusters on Learned 
color features

Fig. 5. Robustness to anomalous anchors. Top row: multiple color anchors
are assigned to the color-homogeneous pillow, which causes conflicting
color guidance (b). Bottom row: no color anchor is assigned to remove color
ambiguity of the right-side hood, which causes structural inconsistency (b).
For both cases, the luminance-guided refinement improves the structural
consistency effectively (c). Anchors are marked with white boundary in (b).
The top image is from Flickr ©Erin Nealey.

be mapped into the conditional color probabilities P′𝑠 through a side
linear projection layer (not shown in Fig. 2 to avoid distraction).
To further refine the colors, we employ the RefineNet to generate
the final colors C from the combination of the input grayscale
L and the pixel-wise conditional feature F′ that is diffused from
F′𝑠 by SP-Diffusion. Here, the grayscale input makes effects in
providing luminance cues to identify and correct color artifacts.
During training, the anchor colors are assigned with the ground-
truth colors, so that we can take the ground truth for supervision.
For inference, we can freely sample the anchor colors from the
predicted distribution to guide the color generation.
Our anchors sometimes are not perfectly located, because the

anchor number is an empirically hyper-parameter (i.e. the cluster
number of K-Means). For example, when the anchors are not
enough or more than needed, the anchor-guided colorization may
suffer from color ambiguity or conflicting color guidance. Fig. 5
illustrates two typical examples. Fortunately, our model inherently
has some features to cope with such accidents. First, the probabilistic
color modeler shares the same backbone feature with the anchor-
guided color generator, whose structural consistent property, as
encouraged by the anchor-guided branch, also benefits the predicted
probabilistic colors. As shown in Fig. 5(a), the independently
sampled primitive colors present certain structural consistency
already. It means that even if more than one anchors are located in
a color-homogeneous region, they still have a good chance to be
assigned with consistent colors by independently sampling. Besides,
as illustrated in Fig. 5(c), our RefineNet plays an important role to
correct inconsistent colors by referring to the luminance cues. This
feature benefits from joint training, which is studied in Section 5.4.
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4.4 Loss Function
Our model is trained with three loss terms that supervise the
learning of superpixel segmentation, color distribution modeling,
and conditional color generation respectively.

Affinity aggregation loss. We use a similar training objective
as [Yang et al. 2020] to supervise SPixNet. Themajor difference is that
we use the ground-truth chromatic channelsC𝑔𝑡 ∈ R𝐻×𝑊 ×2 for self-
reconstruction while take the grayscale L as input. This is possible
because adjacent pixels with similar luminance generally have
similar color [Levin et al. 2004]. Specifically, the affinity aggregation
loss L𝑎𝑔𝑔𝑟 is formulated to group pixels with similar chromatic
property and enforce the superpixels to be spatially compact, written
as:

L𝑎𝑔𝑔𝑟 =
1
𝑁

∑
p

| |C𝑔𝑡 (p) − C̃𝑔𝑡 (p) | |2 +
𝛼

𝑆
| |p − p̃| |2 . (3)

Here C̃𝑔𝑡 and p̃ are computed through Eq. 2 and Eq. 1. 𝑁 = 𝐻 ·𝑊 .
𝑆 is the superpixel sampling interval, and 𝛼 is a weight balancing
the two terms. We empirically set 𝑆 = 16 and 𝛼 = 3𝑒−4 in our
experiment.

Color distribution loss. As stated above, the output of the proba-
bilistic color modeler is P𝑠 ∈ R�̃�×�̃� ×313, where the color distribu-
tion is represented by a 313-way probability vector. To construct
the supervision signal, we first apply SP-Pooling to C𝑔𝑡 and then
convert the color values into one-hot representation P𝑔𝑡𝑠 . Alike to
classification tasks, we adopt cross entropy to compute the color
distribution loss L𝑑𝑖𝑠𝑡 , where �̃� = �̃� · �̃� for normalization.

L𝑑𝑖𝑠𝑡 =
1
�̃�

∑
s
−P𝑔𝑡𝑠 (s) log P𝑠 (s) . (4)

Conditional generation loss. The anchor-guided color generation
is supervised in two aspects. First, the color generator is required to
generate per-primitive colors by referring the color correlation be-
tween primitives, especially between anchors and other primitives.
Considering the possible color ambiguity, we adopt cross entropy
to measure the discrepancy of the superpixel based conditional
color distribution P′𝑠 . Second, the RefineNet is required to correct
and refine the conditional color features toward better perceptual
quality. So, our conditional generation loss L𝑐𝑜𝑙𝑜𝑟 is defined as:

L𝑐𝑜𝑙𝑜𝑟 =
1
�̃�

∑
s
−P𝑔𝑡𝑠 (s) log P′𝑠 (s) + 𝛽

∑
𝑙

𝜔𝑙 | |Φ𝑙 (C𝑔𝑡 ) − Φ𝑙 (C) | |1 .

(5)
Here Φ𝑙 is the feature maps for 𝑙-th layer of a pretrained VGG-
19 network [Simonyan and Zisserman 2015], where the five lay-
ers {𝑐𝑜𝑛𝑣1_1, 𝑐𝑜𝑛𝑣2_1, 𝑐𝑜𝑛𝑣3_1, 𝑐𝑜𝑛𝑣4_1, 𝑐𝑜𝑛𝑣5_1} are adopted. 𝜔𝑙
denotes the weight for each layer. 𝛽 = 5.0 is empirically set to
balance the magnitude difference of the two terms. During training,
the anchors are assigned with the ground-truth color to make the
supervision signal applicable.

Overall, we first train the SPixeNet individually with L𝑎𝑔𝑔𝑟 until
converges. Then, with the pretrained SPixNet frozen, the model is
trained from scratch under the loss function L = L𝑑𝑖𝑠𝑡 + 𝜆L𝑐𝑜𝑙𝑜𝑟 .
We set 𝜆 = 1.0 to emphasize the color distribution modeling and
anchor-guided color generation equally.

5 EXPERIMENTAL RESULTS
We evaluate our method through quantitative and qualitative
comparison with existing state-of-the-art methods over multiple
representative datasets. The perceptual realism is assessed via user
study. Besides, ablation studies are conducted to identify how our
method works.

5.1 Implementation Details
We train SPixNet using batch size 256 and linearly decaying the
learning rate from 𝑙𝑟 = 2𝑒−4 to 2𝑒−6 within 20 epochs. With
the pretrained SPixNet frozen, we train the full model using
batch size 96 and linearly decaying the learning rate from 𝑙𝑟 =

2𝑒−4 to 2𝑒−6 within 60 epochs. Adam [Kingma and Ba 2014]
optimizer with 𝛽1 = 0 and 𝛽2 = 0.9 is used. Our model is
trained on the training set of ImageNet [Deng et al. 2009] only
but evaluated on multiple validation set of other datasets. Images
in training are resized to a fixed size (256 × 256), though our
model can process images of arbitrary resolution in inference.
Unless specified, we use the default trained model (𝐾 = 8 color
anchors) to generate results for all these quantitative and qualitative
evaluations, without any case by case hyper-parameter tuning
involved. Our source code and pretrained model are released
at: https://github.com/MenghanXia/DisentangledColorization.

Prior arts. We compare our method with recent learning-based
automatic colorization methods, including three categories. (i)
Classificationmodel: CIColor [Zhang et al. 2016] that predicts per-
pixel color probabilities. (ii) Regression model: UGColor [Zhang
et al. 2017] that utilizes random color hint to simulate user in-
teraction during training while supports automatic colorization
(i.e. feeding no hint) in inference; InstColor [Su et al. 2020]
that employs instance detection for individual color prediction;
Deoldify [Antic 2019] that adopts self-attention to utilize long-
distance correlations; ChromaGAN [Vitoria et al. 2020] that employs
a dual-branch structure for joint image classification and color
prediction. (iii) Autoregression model: ColTran [Kumar et al.
2021] that use an encoder-decoder Tranformer for low-resolution
color autoregression, with additional color and spatial enhancement
followed. For evaluation, we use their official codes and released
model weights, which are either trained on the same training set as
ours or additionally fine-tuned on COCO-Stuff.

Dataset. Following the prior practice [Su et al. 2020; Zhang et al.
2016], we perform evaluations on the ImageNet ctest [Deng et al.
2009] (10k images) that is a subset of the ImageNet validation split
used as a standard evaluation benchmark, and the validation set
of COCO-Stuff [Caesar et al. 2018] (5k images). Additionally, we
take the legacy photo dataset [Luo et al. 2020] that contains about
37k historical black-and-white photos to check the performance on
real-world legacy photos.

5.2 Qualitative Evaluation
Most colorization methods work quite well on natural scenes,
since vegetation, sky, lake/sea and animals have little color am-
biguity. However, they are still challenged to achieve satisfactory
results on man-made scenes, such as human clothes, vehicles,
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2

(e) Ours(a) Input (b) UGColor (c) Deoldify (d) ColTran (f) Ground truth

Fig. 6. Comparative showcase of challenging examples. Flickr ©L Sanford; Flickr ©SonnyandSandy; Flickr ©Morning Calm Weekly Newspaper Photo Archive;
Flickr ©Ray Forster; Flickr ©Paul; Flickr ©Shinya Suzuki; Flickr ©mirsasha; Flickr ©hmmlargeart.

sport facilities, and articles of daily use, etc, which can present
diverse colors potentially. In Fig. 6, we make visual comparison
on several typical examples with the most competitive state-of-
the-art methods, UGColor [Zhang et al. 2017], Deoldify [Antic

2019], and ColTran [Kumar et al. 2021], while the result of other
methods are available in the supplementary. Readers can check
more qualitative comparison in the supplementary. In general,
we can inspect the colorization quality in three aspects, i.e. color
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5

(e) Ours(a) Input (b) UGColor (c) Deodify (d) ColTran

(e) Ours(a) Input (b) UGColor (c) Deoldify (d) ColTran

Fig. 7. Comparative showcase of colorizing historical photos (no ground truth available). Images are from the KeystoneDepth dataset (Public Domain).

realism (for example, human face can not be green), colorfulness,
and structure consistency (the color-homogeneous parts should
be assigned with the same color). As we can observe, UGColor
and Deoldify tend to generate desaturated colors and introduce
spatial inconsistency, which is the common weakness of regression
based methods in front of color multimodality. Benefiting of the
sequential dependence modeling through autoregression, ColTran
achieves a relatively better performance, including the colorfulness
and structure consistence. However, it is still common to see artifacts
in local parts, such as the trousers of the man (third row (d)) and
the athletes’ left leg (bottom row (d)). In contrast, our method (e)
achieves noticeable superiority in all aspects, which generates visual
plausible appearances with outstanding structural consistency and
colorfulness. This is mainly attributed to the advantages of our
disentangled colorization paradigm, where the multimodal colors
and structural consistency are well guaranteed through separate
branches and in a non-interfering manner. Moreover, the adoption
of superpixel primitives avoid the color bleeding issue by utilizing
the local luminance cues. In Fig. 7, we make comparison on real-
world legacy black-and-white photos and our method still holds the
advantages mentioned above. It indicates the good generalization of
our model since it is only trained on the training split of ImageNet.

User study. There is no generally accepted criterion for coloriza-
tion evaluation and human visual system is still the most reliable

measure. We conduct a user study to evaluate the colorization in
perceptual realism. To prepare the evaluation set, we randomly
select 30 samples from the validation set of COCO-Stuff and 27 valid
color images are used, which covers both natural scenes and man-
made scenes (as provided in the supplementary). For each sample,
the participants are shown a series of color images, including the
colorized images by different methods and the ground-truth image,
placed in random order. Then, the participants are asked to rank
the top-3 images in terms of perceptual realism, i.e. the best, the
second-best, and the third-best. The motivation here is to simplify
the evaluation but still introduce certain discriminability between
different results. In this study, 54 participants with good vision and
color recognition complete the evaluation successfully. We analyze
the collected evaluation result in two aspects: (i) Rank score: the
score of each method according to the rank-score table: {the-best:3;
second-best:2; third-best:1, others:0}; (ii) Best-rated: the times of
being selected as the best.
The statistics are tabulated in Table 2. Overall, our results are

regarded as more perceptually realistic than other competitors but
still lag behind the ground-truth images. Besides, the superiority of
our method to the second-best method Deoldify is not as large
as we expected from the visual comparison in Fig. 6. It can be
explained by the fact that existing methods only struggle in man-
made scenes but work well in natural scenes while the randomly
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Table 2. Statistic from user study. The rank-score table is: {the-best:3; second-
best:2; third-best:1, others:0}. Best-rated counts the times of being selected
as the best. The sum over all the 27 examples are used.

Property InstCol UGColor Deoldify ColTran Ours Ground truth

Rank score ↑ 23.69 17.30 26.67 8.28 28.31 57.76

Best-rated ↑ 1.96 1.56 2.94 0.78 4.13 15.63
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(a) Automatic colorization (c) User manipulation(b) Diverse sampling
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Fig. 8. Visualization of the color distribution of representative color anchors.
Flickr ©Will-travel.

7

(a) Automatic colorization (c) User manipulation(b) Diverse sampling

Fig. 9. Diverse and controllable colorization. For (a) and (b), the
automatically located 8 anchors are used. For (c), the anchor locations
and their assigned colors are modified manually. The anchors are marked
with white boundary on the final result. Flickr ©Will-travel; Flickr ©Timo
Kuusela.

selected evaluation set contains many natural scenes, which brings
down the distinctiveness of our method in some degree.

Diverse and controllable colorization. In our model, we represent
the potential color distribution of the input image with several color
anchors, each of which is associated with individual probabilistic
colors. Fig. 8 illustrates the color distribution of some anchors, which
generally present multiple peaks. Interestingly, the anchors with

higher color ambiguity (e.g., the umbrella) tend to have more peaks
and more diverse colors, and vice versa. Thanks to such anchor-
based color representation, our trained model has the flexibility
to support diverse and controllable colorization. Specifically, by
sampling different anchor color values, we can obtain diverse
colorization results, as exampled in Fig. 9(a),(b). In addition, users
can even control the colorization by manually modifying the anchor
locations, e.g., removing anchors or adding new anchors, and
assigning any preferred colors to them. Fig. 9(c) demonstrates two
examples that are colorized with user manipulated anchors. It brings
advantages in two folds. First, it allows users to achieve their in-
tended colorization results through color selection and modification.
Second, it also serves as a measure to address artifacts caused by
abnormally allocated anchors. Fig. 9 evidences the consistent spatial
affinity between the colorized images despite conditioned on varied
anchor colors, which indicates the effective disentanglement of the
color multimodality and structural consistency in our model.

5.3 Quantitative Evaluation
Metrics. Considering the color multimodality, the goal of coloriza-

tion is to generate visually plausible colors rather than recover the
actual ground truth. As a result, we quantitatively evaluate the
colorization performance in two aspects, i.e. perceptual realism
and color vividness. Frechet’ Inception Score (FID) [Heusel et al.
2017] measures the distribution similarity between the colorization
results and the ground truth, which reflects the perceptual realism
in some sense. When no ground-truth dataset available (such as the
Legacy-Photo dataset), we adopt Inception Score (IS) [Salimans et al.
2016] to measure the perceptual realism. Colorfulness [Hasler and
Süsstrunk 2003] reflects the color vividness in the way of human
vision perception. According to the paper, the moderately colorful,
averaged colorful and quite colorful values of general images are
33, 45 and 59 respectively. In addition, following the practice of
previous methods [Su et al. 2020; Vitoria et al. 2020; Zhang et al.
2017], we also provide the evaluation measured by PSNR, SSIM,
and LIPIS [Zhang et al. 2018] just for reference. But we argue that
these ground-truth dependent metrics can not well reflect the actual
colorization performance because plausible colorization probably
diverges largely with the ground truth.

As the quantitative comparison shown in Table 3, the regression
based methods, such as UGColor [2017], Deoldify [2019], Inst-
Color [2020], ChromaGAN [2020], generally perform better on
PSNR, SSIM, and LPIPS, since they consider the colorization as
a deterministic color regression problem. However, due to this
less reasonable assumption, their results usually degrade into
desaturated colors and even introduce spatially inconsistent colors,
which are reflected by the inferior colorfulness and FID. In contrast,
CIColor [2016], ColTran [2021] and oursmodel the color distribution
explicitly and thus achieves notably higher colorfulness. As diverse
colors is learned, their performance on the fidelity metrics (i.e.
PSNR, SSIM, and LPIPS) are much lower than those regression
based methods. Interestingly, once the color ambiguity is removed
by providing several ground-truth color hints, our method (as ours*
in Table 3) achieves competitive performance in those metrics.
The adoption of ground-truth color hints also improves the FID

ACM Trans. Graph., Vol. 41, No. 6, Article 204. Publication date: December 2022.



204:10 • Menghan Xia, Wenbo Hu, Tien-Tsin Wong, and Jue Wang

Table 3. Quantitative results on the validation sets from different methods. The best items are highlighted in bold.

Method ImageNet (10k) COCO-Stuff (5k) Legacy-Photo (37k)
FID ↓ Colorfulness ↑ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ Colorfulness ↑ PSNR ↑ SSIM ↑ LPIPS ↓ IS ↑ Colorfulness ↑

CIColor [2016] 11.58 42.89 21.96 0.897 0.224 21.44 42.46 22.08 0.902 0.217 11.04 32.36
UGColor [2017] 6.85 27.91 24.26 0.919 0.174 14.74 28.64 24.34 0.924 0.165 11.81 20.11
Deoldify [2019] 5.78 23.41 23.34 0.907 0.188 12.75 23.62 23.49 0.914 0.181 12.88 24.45
InstColor [2020] 7.35 25.54 22.03 0.909 0.919 12.24 29.38 22.35 0.838 0.238 12.00 19.64

ChromaGAN [2020] 9.60 29.34 22.85 0.876 0.230 20.57 29.34 22.74 0.871 0.233 11.75 23.28
ColTran [2021] 6.37 38.64 21.81 0.892 0.218 11.65 38.95 22.11 0.898 0.210 13.08 11.69

Ours 5.57 51.43 20.72 0.862 0.229 10.59 52.85 20.46 0.851 0.236 13.72 32.67

Ours* 2.76 33.70 27.57 0.918 0.125 6.48 32.16 26.73 0.908 0.138 N/A N/A

9

Study Component Variant FID Colorfulness

Color anchor

GTCluster‐8 10.1124 52.5352

FeatureCluster‐8 (ours) 10.5920 52.8479

Random‐8 10.2507 47.7446

Aggregated primitive
Mini patch 11.5151 50.7819

Soft superpixel (ours) 10.5920 52.8479

Pixel‐level refinement

No refinement 14.6993 56.7135

Post‐refinement 11.4894 46.8849

Joint refinement (ours) 10.5920 52.8479

Disentangled structure
No anchor branch [class/regress] 9.3006/9.7657 22.5146/24.9803

Dual branch (ours) 10.5920 52.8479

(b) No anchor branch (c) Mini‐patch primitive (d) No refinement (e) Post‐refinement (f) Ours(a) Ground truth

Fig. 10. Visual comparison from ablation studies. (b)∼(e) denotes the result of our method with one specific design ablated. White arrows indicate the artifacts.
Flickr ©Chris; Flickr ©mirsasha.

because the anchor colors assigned from the ground truth are free
of causing conflictive color guidance. Similarly, we can reduce
such cases by using less anchor numbers, which also improves
FID scores (see Fig. 11). FID (and IS) is a relatively reliable metric
that mainly criticizes structural inconsistency of colors while not
so picky at color vividness. Anyway, our method holds the best
performance in colorfulness and FID (or IS) over all datasets, thanks
to the superiority of our disentangled colorization framework. For
different datasets, COCO-Stuff is more challenging than ImageNet
because the former mainly contains multiple-object images while
the latter is dominated by single-object images. In the Legacy-Photo
dataset, ColTran [2021] has an unstable performance because of the
fragility of sequential inference in complex scenes. It sometimes
even generates grayscale-alike results, as evidenced in Fig. 7 (top)
and the colorfulness metric.

5.4 Ablation Study
We study several major designs of our proposed method in this sec-
tion. For comparative analysis, we perform quantitative evaluation
on the COCO-Stuff dataset with FID and colorfulness measured.

Disentangled structure. The main advantage of our method lies
in the proposed disentangled paradigm, which makes the color
multimodality and structural consistency learned separately. To
verify this claim, we construct a baseline by removing the anchor

representation branch, which becomes a regression based model.
Alike to other regression based methods, it suffers from color
ambiguity and tends to cause desaturated colors and structural
inconsistency. The visual results shown in Fig. 10 evidence this
phenomena. However, the quantitative evaluation is presented in
Table 4, showing that the baseline achieves much lower colorfulness
but even better FID. It is possibly benefit from our other designs like
affinity aggregation and joint refinement, which have considerable
advantages on suppressing artifacts. In some sense, the conservative
colorization that assigns less vivid colors to avoid dramatic color
inconsistency tends to help on FID. This situation can also be
observed in Fig. 11. That is to say, FID and colorfulness should be
considered comprehensively in order to reflect the visually perceived
colorization quality.

Affinity aggregation. We employ soft association based superpix-
els to reduce colorization primitives, which is a kind of affinity based
aggregation. A common practice used by existing methods [Kumar
et al. 2021; Zhang et al. 2016] is to shrink the output resolution
by assigning each mini-patch with a single color. To show our
advantage, we construct a baseline by replacing the superpixel
segmentation with mini-patch partition. The quantitative results are
shown in Table 4. This superiority comes from the higher accuracy
of aggregating pixels based on luminance/color affinity rather than
naively assuming the pixels within a local patch sharing the same
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Table 4. Quantitative results of ablation studies.

Studied component Model variant FID ↓ Colorfulness ↑

Disentangled structure No anchor branch 9.77 24.98
Dual branch 10.59 52.85

Affinity aggregation Mini-patch primitive 11.52 50.78
Soft superpixel 10.59 52.85

Pixel-level refinement
No refinement 14.70 56.71
Post refinement 11.49 46.88
Joint refinement 10.59 52.85

Clustering feature Ground-truth color 10.11 52.54
Learned Feature 10.59 52.85
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Study Component Hint Num FID Colorfulness

Anchor-5

3 9.6345 45.1464

5 10.2310 50.6725

8 10.6134 53.9675

11 10.8590 55.6095

14 11.0146 56.7041

Anchor-8

3 9.8878 42.6258

5 10.1452 48.8686

8 10.5920 52.8479

11 10.7759 54.1661

14 10.9708 54.9564

Anchor-11

3 10.9155 41.7139

5 10.8886 48.5740

8 11.2012 52.4650

11 11.4857 53.9731

14 11.7024 54.9564

FID

Anchor number

9.0

9.5

10.0

10.5

11.0

11.5
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3 5 8 11 14

anchor-5 anchor-8 anchor-11

40.0

43.0
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49.0

52.0

55.0

58.0

3 5 8 11 14

anchor-5 anchor-8 anchor-11

Colorfulness

Anchor number

Fig. 11. Effects of the number of anchors. Anchor-5, anchor-8, and anchor-11
denote three models that are trained with 5, 8, 11 anchors respectively. They
are evaluated by adopting various number of anchors in inference.

color. In Fig. 10(c), we can observe some color-bleeding effect on the
girl’s neck because of the less reasonable aggregation assumption.

Pixel-wise Refinement. As we discussed in Section 4.3, the Re-
fineNet plays an important role for artifacts suppression by utilizing
the luminance cues for color correction. We speculate that the
jointing training is a key requirement to achieve that advantage.
To verify this, we build two baselines: (i) No refinement that the
model is trained without the RefineNet; (ii) Post-refinement that
the RefineNet is trained individually as a post-processing for (i).
The quantitative comparison is presented in Table 4, which shows
that both No refinement and Post-refinement can not compete with
our proposed joint training. In Fig. 10, we can find that some local
artifacts introduced in (d) but still remain in (e). In contrast, our
results (f) take on perceptually realistic appearances.

Clustering Feature. In Section 4.2, we propose to utilize the learned
color feature for primitive clustering, so as to allocate anchors with
color independence and global coverage. To study the effectiveness,
we evaluate the result of our method when the ground-truth color
is used for clustering for comparison. The quantitative results are
presented in Table 4, which shows that our learned feature works
similarly as the ground-truth color in aspect of anchor location.
Besides, we also provide some visual comparison with another naive
baseline that randomly scatters the anchors, in the supplementary.

The number of anchors. We use color anchors to represent the
color distribution of the input image, so it is necessary to study the
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14 11.0146 56.7041

Anchor‐8
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Fig. 12. Colorization with different number of anchors used. The model
trained with 8 anchors is evaluated here.

influence when different number of anchors are used. Specifically,
we construct three model variants: anchor-5, anchor-8, anchor-11,
which are trainedwith 5, 8, 11, anchors respectively. For each variant,
we can choose arbitrary number of anchors to use in inference
phase. Particularly, we evaluate these models with 3, 5, 8, 11, 14
color anchors used respectively, and show the quantitative results in
Fig. 11. For all these models, colorfulness improves but FID increases
as more anchors are used in inference. The explanation is that more
color anchors means higher probability to cause contradictory color
guidance, which damages perceptual realism and hence increases
FID. Anyhow, more anchor anchors could introduce more colorful
image components and thus increases colorfulness. So, there is
a trade-off in some sense. We provide an example in Fig. 12 to
demonstrate this situation. Besides, we observe that the model
anchor-8 achieves the best comprehensive performance in most
cases. Although the optimal anchor number depends case by case,
we empirically choose the model anchor-8 with 8 color anchors used
in inference as our default setting. Note that, our model has decent
robustness to anchor location, as already demonstrated in Fig. 5.

5.5 Efficiency Analysis
Our model has a CNN-and-Transformer hybrid structure that
includes three functional blocks: feature extraction, anchor construc-
tion, and color generation. To analyze the computational efficiency,
we count the workload of each block in the aspects of model
parameters, floating-point operations (FLOP), and inference timing,
as illustrated in Fig. 13. We test the model on an NVIDIA V100 GPU
by sequentially feeding 100 images that are randomly sampled from
COCO-Stuff dataset and resized to 256 × 256, and then take the
average time as the inference timing. We observe that the major
computation happens at feature extraction and color generation
since the U-shaped CNNs, including backbone network, SpixNet,
and RefineNet, take up most of the model parameters. In contrast, the
two lightweight Transformers, i.e. the probabilistic color modeler
and the color generator, only have about 3% of the total parameters
(1.33M out of 43.06M). Notably, despite the parameter amount and
FLOPs are smaller, the anchor construction consumes the most time
with respect to the other two blocks. This is because the anchor
location has K-Means clustering involved, which introduces iterative
computation.
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Feature Extraction

Param:34.80M
FLOP:71.84G

Anchor Construction

Param:0.66M
FLOP:0.27G

Color Generation

Param:7.60M
FLOP:55.75G

18.57 ms 39.94 ms 14.23 ms

Fig. 13. Computation division of our model. The inference timing is about
forward-passing a single image sized 256 × 256 on an NVIDIA V100 GPU.

Table 5. Efficiency comparison on different colorization models.

Method Param. (M) FLOP (G) Timing (ms)

CIColor [2016] 32.24 41.78 7.29
UGColor [2017] 34.19 75.22 15.88
Deoldify [2019] 218.22 141.32 29.85
InstColor [2020] 176.89 526.09 184.75

ChromaGAN [2020] 47.52 18.85 3.65
ColTrans [2021] 70.71 5782 110708.47

Ours 43.06 127.86 72.74

In Table 5, we provide the efficiency comparison with existing
colorization methods. Alike to application scenario, we only count
the modules that are used during inference. Except for ColTran
that conducts sequential pixel inference, all the other methods
generate the result through a single forward. ColTran has very
huge computation because it is a purely Transformer architecture.
InstColor has a slow inference because it requires object detection
for individual colorization. Overall, our model holds a fair efficiency
performance while achieves a significant superiority in colorization
quality.

5.6 Limitation and Discussion
As a common weakness of automatic colorization, our method can
not generate plausible colors for semantically impenetrable image
content, i.e. the objects or scenes unseen in training set. Fig. 14(top)
shows a bowl of candies that are colorized with less vivid colors.
Besides, when the input image contains many independent instances
as exampled in Fig. 14(bottom), ourmethod tends to give less colorful
results because the color anchors likely fail to cover the scene color
distributionwell. Fortunately, controllable colorization, as supported
by our method, might be an remedial measure for such situations.
Technically, we expect more advanced clustering algorithms to
address this problem by choosing the number of clusters adaptively
to the data. Anyway, it will be a more interesting direction to
equip the model with an self-learning module for anchor location
prediction. At last, the colors generated by our color generator are
mainly determined by the anchor colors, which hinders the color
diversity within the resultant image in some degree. This may be
explained as a limitation of anchor based colorization, namely it is
encouraged to build correlation across the objects that have similar
color distribution. Such cases could be the second example shown
in Fig. 6, where the T-shits of the two persons are colorized with the
same red color. Of course, it would be a way to alleviate this problem
by using more color anchors and with diverse color sampled, but at
the risk of causing structure inconsistency.

10

Feature Extraction
Param:34.80M
FLOP:71.84G

Anchor Construction
Param:0.66M
FLOP:0.27G

Color Generation
Param:7.60M
FLOP:55.75G

18.57 ms 39.94 ms 14.23 ms

(a) Input grayscale (b) Our colorization (c) Ground truth

Fig. 14. Limitation. Our method can not generate vivid colors in the case
of unseen objects or a scene filled with many color-independent instances.
The bottom image is from Flickr ©Oleg Klementiev.

As another future work, our method has a promising applicability
to video colorization, especially in maintaining long-term temporal
coherence. Since adjacent inter-frame coherence can be achieved
through optical flow constraint, the long-term temporal consistence
might be guaranteed by tracking [Zhou et al. 2020] the color anchors
and temporally preserving their colors to avoid error accumulation.

6 CONCLUSION
We proposed a novel image colorization method that disentangles
the color modality and structural consistency to achieve both
aspects effectively. As far as we know, it is the first automatic
colorization method that can achieve vivid colors and structural
consistency at the same time. As evidenced by extensive evaluation,
our method outperforms existing state-of-the-arts by a large margin,
especially in visual quality and perceptual metrics. Moreover, our
method demonstrates good generalization across multiple dataset,
including modern color images and legacy grayscale photos. On a
single trained model, our method supports diverse colorization and
controllable colorization, which broadens the application scenarios.
Besides, various ablation studies justified the effectiveness of our
proposed techniques, which may further inspire other researches.
Anyway, as the first disentangled colorization framework, we adopt
a relatively straightforward solution for color anchor location, which
deserves further investigation to promote the performance.
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